
Research on RMOLB Algorithms for Cloud Load Scheduling 

Wei Guanghui 
Chongqing College of Electronic Engineering, Chongqing, 401331 China 

Keywords: Cloud computing, Load, RMOLB, Research 

Abstract: An online load balancing resource scheduling algorithm (RMOLB) considering real-time 
and multi-dimensional resources is proposed. The algorithm is designed for real-time load 
balancing considering dynamic allocation of virtual machines in data centers. It is easy to operate 
and has good performance. The theoretical analysis proves that the algorithm has a competition 
ratio of 2-1/m, where m is the total number of physical machines. At the same time, through a large 
number of simulation analysis, it is found that RMOLB algorithm has certain advantages over other 
known algorithms in the key indicators of makespan (total completion time), capacity makespan 
(sum of capacity-completion time), imbalance degree and so on. 

1. Introduction 
Up to now, a lot of work has been done on scheduling algorithms and some achievements have 

been achieved. They can be roughly divided into two categories: online load balancing algorithm 
and offline load balancing algorithm. The main difference between them is that the online algorithm 
can only get the status of the current request, while the offline algorithm can get the status of all 
requests during the entire scheduling time[1]. Singh proposed a new load balancing algorithm called 
Vectordot, which can be used to handle hierarchical and multidimensional resources restricted by 
servers and storage[2]. Armbrust summarizes key issues and solutions in cloud computing. Foster 
provides a detailed comparison between cloud computing and grid computing. Andre discussed the 
design details of the data center[3]. Buyya introduces a way to model and simulate cloud computing 
environments. Wickremasinghe introduced the technology of virtual machine migration and 
proposed some migration algorithms. Zhan compares the main load balancing scheduling 
algorithms on traditional network servers[4]. Arzuaga proposes a method to measure the load 
imbalance of virtualized enterprise servers. Tian provides a comparative study of the existing main 
scheduling algorithms and strategies for data centers. Sun proposed a new empirical algorithm for 
obtaining approximate optimal solutions based on integrated resource scheduling[5]. Tian 
introduces a dynamic load scheduling algorithm that only considers the current allocation time and 
multi-dimensional resources, but does not consider the life cycle[6]. Li proposed a cloud task 
scheduling strategy based on ant colony optimization algorithm, which can be used to balance the 
load of the whole system and minimize makespan of a series of tasks[7]. Galloway introduced an 
online greedy algorithm to enable physical machines to dynamically open and close, but did not 
consider the life cycle of virtual machines[8]. 

2. Model establishment 
Suppose there are six virtual machine requests (VM1 ~ VM6), each with different start time, end 

time and capacity requirements. For example, the start time, end time and capacity requirement of 
VM1 are 1, 6 and 0.25 respectively, which indicates that VM1 needs a fixed processing time from 
the beginning of the first slot to the end of the sixth slot, and the capacity requirement in this 
processing time is 0.25. Other virtual machine requests follow this definition. Using some 
traditional metrics such as makespan, load efficiency (load efficiency, also known as skew in some 
literatures), as well as the unbalance value proposed by ourselves (introduced in the next section), 
the measurement results in different scheduling algorithms reflect different performance. Our goal 
is to reduce makespan, unbalance values, and improve load efficiency. 

2018 International Conference on Data Processing, Artificial Intelligence, and Communications (DPAIC 2018)

Copyright © (2018) Francis Academic Press, UK DOI: 10.25236/dpaic.2018.00518



We modeled the allocation of virtual machines as an improved interval scheduling problem 
(MISP), and assumed that the processing time of each virtual machine request was fixed. More 
explanations and analysis of the traditional interval scheduling problem with fixed processing time 
can be found in the literature. We propose an improved interval scheduling problem and compare it 
with some existing algorithms. If a series of requests are 1, 2,... N, then the start time corresponding 
to the first request is Si and the end time is fi; the capacity requirement is ci. 

Since each request requires only a portion of the capacity on a physical machine, we redefine 
makespan as capacity-makespan. Capacity - makespan (CM): In the process of allocating VM 
requests to PM i, we use A (i) to represent the set of VM requests allocated to PM i, J is the ID of 
the virtual machine with the largest load in A (i), and the maximum load of the first virtual machine 
is represented by Li, as shown in Public (1). 

jjiAji tcL
)(

max
∈

=
                     (1)

 

Among them, C is the CPU request of VM, and t is the execution time of request J (the 
processing time of request f). The goal of load balancing is to minimize the maximum load of all 
PMs. 

3. Resource scheduling algorithm 
Zheng et al. introduced a comprehensive load balancing index and a load balancing algorithm, as 

shown in bulletin (2). 

m

i

mm

ii

mm

ii

mm

ii

Net
Netd

DN
DNc

MN
MNb

CN
CNaB ×+

×
×

×+
×
×

×+
×
×

×=
3

3

2

2

1

1

    (2)
 

Among them, I is the number of a PM, m is the ID of the selected reference physical machine, 
N1 is the CPU performance, N2 is the memory parameter, N3 is the bandwidth parameter, C and M 
are the CPU and memory utilization, D is the transmission rate of hard disk, Net is the network 
throughput, a, b, c, D are the relative weighted values of CPU, memory, hard disk and network, 
initial value It is 1. The optimization goal is to find PM with the minimum B value to allocate 
requests. 

The average CPU utilization of PM over a period of time is shown in formula (3): 

0

0

( )k
n T

i ku k
i n

kk

PCPU T
PCPU

T
=

=

×
= ∑

∑                (3)  
 

kT
iPCPU is the average utilization rate of CPUi in slot Tk. PM memory utilization U

iPmen and 
storage utilization T

iPStorage can be calculated in the same way. Similarly, the average CPU 
utilization of VM can be calculated in this way. 

PMi's comprehensive load imbalance ILBi; in statistics, variance is widely used to assess the 
degree of data dispersion. Variance can be used to define ILBi, the comprehensive load imbalance 
of server i, as shown in formula (4): 

2 2 2( ) ( ) ( )
3

A A A
i u i u i u

i
Avg CPU Avg Mem Avg Storage

LIB
− + − + −

=
  (4)

 

A
uCPU , A

uMem , A
uStorage  are the average utilization rates of CPU, memory and storage in data 

center, respectively. ILBi represents the load imbalance of CPU, memory and network bandwidth 
utilization of a computer. This measure is very similar to VMware's DRS load balancing measure. 

Skew refers to the ratio of the minimum average load to the maximum average load of all 
computers, as shown in formula (5): 

19



min ( )
( )

max ( )
i i

i i

Load
skew makespan

Load
=

                 (5)
 

Skew can represent the efficiency of load balancing to some extent. 
The definition of CPU imbalance is shown in formula (6): 

n
PCPUPCPU

IBLcpu
n

i avg
U
i∑ =
−

= 0
2)(

             (6)
 

PCPUavg represents the average utilization of all CPU in a data center. Memory imbalance 
IBLmem and storage imbalance IBLstorage can be obtained in the same way. 

Skew of capacity-makespan is defined as minimum capacity-makespan/maximum 
capacity-makespan: 

∑
∑

∈

∈=
)(

)(

max

min
makespan)-ityskew(capac

iAj jj

iAj jj

tc

tc

         (7)
 

Generally speaking, the larger the value, the better the load balancing effect. From the above 
formulas, we can see that life cycle and capacity sharing are two main differences from traditional 
measurement indicators, such as makespan and skew. Traditional List Scheduling is widely used in 
load balancing of online multiprocessor scheduling. Considering the fixed processing time interval 
and capacity sharing attributes of data centers, we propose a new online algorithm RMOLB. For 
each request, the algorithm first finds the PM with the minimum average capacity-makespan, if the 
PM does not exist. With sufficient resources, requests are allocated to PM with sub-small average 
capacity-makespan, and so on, and sufficient physical machines are provided to ensure that all 
requests are not rejected; using priority queue data structure, the computational complexity of 
RMOLB algorithm is O (nlog2m), where n is the number of VM requests, m is required. The 
number of PM. 

Therefore, by using priority queues or related data structures, the algorithm can find the PM with 
the smallest average capacity - makespan in O (log2m) time. The upper limit of RMOLB algorithm 
is determined. For RMOLB, according to its allocation mode, the first (m-1)*g requests will be 
equally allocated to m computers (assuming (m-1)*g can divide m), and the last request will be 
allocated to the computer with the smallest capacity-makespan. 

4. Comparison of RMOLB algorithm with other algorithms 
The reason why RMOLB algorithm has better performance than random algorithm and rotation 

algorithm is easy to understand, because random algorithm and rotation algorithm do not take other 
metrics such as makespan, Skew and load balance into account. The performance of RMOLB 
algorithm is better than ZHJZ algorithm (benchmark) and LS algorithm because RMOLB algorithm 
constantly updates formula (2) in the lifecycle of virtual machine and physical machine to obtain 
more accurate state of virtual machine requests. However, ZHJZ algorithm (benchmark) and LS 
algorithm only consider the current allocation time to determine the allocation, but they do not. 
Consider the lifecycle of physical machines and virtual machines. The upper limit of approximation 
of RMOLB algorithm is also explained in the proof of algorithm approximation. In current 
applications, slot attributes related to requests should be measured by some more appropriate and 
accurate metrics. For example, the capacity-makespan index with time slot is better than the 
traditional index without time span. 

5. Summary 
In this paper, we propose a real-time and multi-dimensional online load balancing resource 

scheduling (RMOLB) algorithm to solve the real-time multi-dimensional resource scheduling 

20



problem in data centers. The simulation results show that RMOLB algorithm has better 
performance than some existing algorithms in terms of unbalance, makespan capacity makespan, 
skew of capacity-makespan and so on. 

References 
[1] L. Andre, et al. The Datacenter as a Computer: An Introduction to the Design ofwarehouse-scale 
Machines Ebook, 2009 
[2] M. Armbrust, et al. Above the Coulds: A Berkeley View of Cloud Computing. Technicalreport, 
2009. 
[3] E. Arzuaga, D. R. Kaeli. Quantifying load imbalance on virtualized enterprise servers. In the 
proceedings of WOSP/SIPEW, January 28-30, 2010, San Jose, California, USA. 
[4] R. Buyya, R. Ranjan and R. N. Calheiros Modeling and Simulation of Scalable Cloud 
Computing Environments and the Cloud Sim Toolkit: Challenges and Opportunities Proceedings of 
the 7th High Performance Computing and Simulation Conference (HPCS2009. ISBN: 
978-1-4244-4907-1, IEEE Press, New York, USA), Leipzig, Germany, June1-24.20 
[5] R L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal on Applied 
Mathematics, Vol 17, No. 2.(Mar, 1969), pp 416-429 
[6] A Gulati, G. Shanmuganathan, A Holler, I. Ahmad cloud-scale resource management challenges 
and techniques. Vmware Technical Journal, 2011 
[7] J. Hu, J. a Gu, G. Sun, et al. A Scheduling Strategy on Load Balancing of Virtual Machine 
Resources in Cloud Computing Environment, Parallel Architectures, Algorithms and Programming 
(PAAP). 2010 Third International Symposium on, pp 89-96, 18-20 Dec2010 
[8] K. Li, G. Xu, G. Zhao, et al. Cloud Task Scheduling Based on Load Balancing Ant Colony 
Optimization chinagrid, pp3-9, 2011 Sixth Annual China Grid Con ference, 2011. 

 

21




